\begin{eqnarray} E_z\left(z\right)=-j\omega\left(A_z+\frac{1}{k^2}\frac{\partial^2A_z}{\partial z\partial z}\right) \end{eqnarray} |
\begin{eqnarray} \frac{\partial^2A_z\left(1\right)}{\partial z\partial z}\approx\frac{2A_z\left(1\right)-5A_z\left(2\right)+4A_z(3)-A_z(4)}{{\Delta z}^2} \end{eqnarray} |
\begin{eqnarray} \frac{\partial^2A_z\left(n\right)}{\partial z\partial z}\approx\frac{-A_z\left(n-3\right)+4A_z\left(n-2\right)-5A_z(n-1)-2A_z(n)}{{\Delta z}^2} \end{eqnarray} |
\begin{eqnarray} \frac{\partial^2A_z\left(i\right)}{\partial z\partial z}\approx\frac{A_z\left(i-1\right)-2A_z\left(i\right)-A_z(i+1)}{{\Delta z}^2} \end{eqnarray} |