Two Dimensional Finite Element Method
Heat Equation-9

x方向とy方向の両方の積分結果が出たところで、2つを足し合わせます。ここでは、積分領域を0からLxと0からLyに限定しましたが、積分領域は任意であっても、今まで学習したとこは、使えることが知られています。すると、2つを足し合わせた結果は、下の左図の様になります。また、線積分の方向と積分する部分は、右図のの様になります。

これを、Greenの定理(Green's theorem)と言います。勿論 Divergence の定理とも言います。というのも、左辺の領域積分が発散を意味しているからです。

ところで、上式の右辺は、何者でしょう。ここで、もう一度、基本的なベクトルについて復習します。下に、ベクトル、qtnとそれらの特徴について書いて有りますので、十分理解しておいて下さい。

上のことがらを踏まえて、qnの内積を計算してみて下さい。下図の様になります。

そして、上の式の両辺を、境界線(s)に沿って線積分すると、下の様になります。

BACK NEXT
Menu Heat Eq. Cdtvty WRM2 Tri Stiff Bound Ex Rmk