\begin{eqnarray} Q=\frac{R_P}{X_P} \end{eqnarray} | \begin{eqnarray} R_S=R_P\frac{1}{1+Q^2} \end{eqnarray} | \begin{eqnarray} X_S=X_P\frac{Q^2}{1+Q^2} \end{eqnarray} | \begin{eqnarray} L_S=\frac{X_S}{ω} \end{eqnarray} |
\begin{eqnarray} Q=\frac{X_S}{R_S} \end{eqnarray} | \begin{eqnarray} R_P=R_S(1+Q^2) \end{eqnarray} | \begin{eqnarray} X_P=X_S\frac{1+Q^2}{Q^2} \end{eqnarray} | \begin{eqnarray} L_P=\frac{X_P}{ω} \end{eqnarray} |
\begin{eqnarray}\frac{1}{Z} =\frac{1}{R_P}+\frac{1}{jX_P}\end{eqnarray} | ⇨ | \begin{eqnarray}Z =\frac{jR_PX_P}{R_P+jX_P}\end{eqnarray} |
\begin{eqnarray} Z =R_P\frac{X_P^2}{R_P^2+X_P^2}+jX_P\frac{R_P^2}{R_P^2+X_P^2} \end{eqnarray} |
\begin{eqnarray} R_S =R_P\frac{X_P^2}{R_P^2+X_P^2} \end{eqnarray} | \begin{eqnarray} X_S =X_P\frac{R_P^2}{R_P^2+X_P^2} \end{eqnarray} |
\begin{eqnarray} C_S=C_P\frac{1+Q^2}{Q^2} \end{eqnarray} |