\begin{eqnarray} \int_{r_1}^{r_2}{\frac{q}{\varepsilon}\delta Vr}dr=\left\{\delta V\right\}^T\frac{q}{\varepsilon}\int_{r_1}^{r_2}\left\{\begin{matrix}rN_1\\rN_2\\\end{matrix}\right\}dr=\left\{\delta V\right\}^T\frac{q}{\varepsilon}\left\{\begin{matrix}\left(\frac{r_2R^2}{2L}-\frac{R^3}{3L}\right)\\\left(\frac{R^3}{3L}-\frac{r_1R^2}{2L}\right)\\\end{matrix}\right\}=\left\{\delta V\right\}^T\left\{F\right\} \end{eqnarray} |
\begin{eqnarray} \left.r^2\frac{dV}{dr}\delta V\right]_{r_1}^{r_2}=\left\{\delta V\right\}^T\left\{\begin{matrix}-r_1^2D_1\\{\ \ \ \ r}_2^2D_2\\\end{matrix}\right\}=\left\{\delta V\right\}^T\left\{D\right\} \end{eqnarray} |
\begin{eqnarray} D=-a^2\frac{Q}{2\pi a} \end{eqnarray} |
\begin{eqnarray} \left\{\delta V\right\}^T\left\{\left\{D\right\}-\left[\left[C\right]+\left[B\right]\right]\left\{V\right\}+\left\{F\right\}\right\}=R \end{eqnarray} |
\begin{eqnarray} \left\{D\right\}-\left[\left[C\right]+\left[B\right]\right]\left\{V\right\}+\left\{F\right\}=0 \end{eqnarray} |
\begin{eqnarray} \left[\left[C\right]+\left[B\right]\right]\left\{V\right\}=\left\{F\right\}+\left\{D\right\} \end{eqnarray} |