PROGRAM DIPOLE
C*************************************************************************
C----- COMPUTAION OF DIRECT(OR SELF) IMPEDFANCE(Z) OF DIPOLE ANTENNA
C ****** ASSUMPTION ******
C----- FEEDING POINT AT ANY POINT BETWEEN -LAMBDA/4 AND +LAMBDA/4 --------
C-------- Radius of cross section of element (A) = 0
C-"A" IS OMITED SINCE A is very small in comparison with lengh of anttenna
C-------- NE = number of segments where integration is performed
C-------- NFREQUENCY = NUMBER OF WAVES ON DIPOLE ANTENNA
C-------- NFEEDSEG = NUMBER OF FEEDING POINTS
C-------- WAVE POWER IS FED THROUGH EACH FEEDING POINT
C-------- H = (LAMBDA/4) / (LAMBDA), DIMENTIONLESS NUMBER
C-------- 27 APRIL 2023 EIJI FUKUMORI
C*************************************************************************
PARAMETER ( INTEPT=6 )
IMPLICIT REAL*8 ( A-H , O-Z )
COMPLEX*16 S
DIMENSION SAI(INTEPT),W(INTEPT)
C*****************************************************************
C---------------------- BASIC PARAMETERS -------------------------
PI = 4.D0*DATAN(1.D0)
NE=40
FLAMBDA = 1.D0
H = FLAMBDA / 4.D0
FKBASE = 2.D0*PI/FLAMBDA
NFREQUENCY = 1
FK = NFREQUENCY*FKBASE
C*****************************************************************
CALL GRULE ( INTEPT , SAI , W )
C*****************************************************************
C------------- FILE MANAGEMENT AND PRINTING HEADER ----------------
OPEN ( 1, FILE="EXACTSIN.DAT", STATUS='UNKNOWN')
WRITE (1,*) 'NF-SIN FDPOINT FRACTION Z-REAL Z-IMAG'
C--------------------- CALCULATION OF IMPEDANCE -------------------
NFEEDING = 40
FRACTION = 1.D0/NFEEDING
DO I = 1 , NFEEDING
FDPOINT = (I-1)*FRACTION*H
FRAC = (I-1)*FRACTION
CALL INTE( NE, FDPOINT, FK, H, INTEPT,SAI,W, S )
WRITE (1,*) NFREQUENCY, FDPOINT, FRAC, DREAL(S),DIMAG(S)
END DO
CLOSE (1)
STOP 'NORMAL TERMINATION SIN'
END
C
C
SUBROUTINE INTE( NE, FDPOINT, FK, H, INTEPT,SAI,W, S )
IMPLICIT REAL*8 ( A-H , O-Z )
DIMENSION SAI(INTEPT),W(INTEPT)
COMPLEX*16 CJ, S, SE, T1, T2, T3
C================ CONSTANTS ======================
C1 = 2.D0*DCOS(FK*H)
CJ = DCMPLX(0.D0,1.D0)
DZ = 2.D0*H/NE
C-------- INTEGRATION STARTS HERE
S = DCMPLX(0.D0,0.D0)
DO IEL = 1 , NE
Z1 = DZ*(IEL-1) - H
Z3 = DZ*IEL - H
Z2 = ( Z1 + Z3 ) / 2.D0
HS = ( Z3 - Z1 ) / 2.D0
SE = DCMPLX(0.D0,0D0)
C-------- GAUSS-LEGENDRE INTEGRATION FOR EACH SEGMENT
DO K = 1 , INTEPT
Z = HS*SAI(K) + Z2
R0 = DABS(Z )
R1 = DABS(Z-H )
R2 = DABS(Z+H )
T1 = CDEXP(-CJ*FK*R1)/R1
T2 = CDEXP(-CJ*FK*R2)/R2
T3 = -C1*CDEXP(-CJ*FK*R0)/R0
SE = SE + (T1+T2+T3)*DSIN(FK*(H-DABS(Z)))*W(K)
END DO
SE = SE*HS
S = S + SE
END DO
S = CJ*30.D0*S/(DSIN(FK*(H+FDPOINT)))**2
RETURN
END
C
C
SUBROUTINE GRULE ( N , SAI , WT )
IMPLICIT REAL*8 ( A-H , O-Z )
DIMENSION SAI(N) , WT(N)
IF ( N .LE. 0 ) STOP'N<=0'
IF ( N .GT. 6 ) STOP'N>6'
IF ( N .EQ. 1 ) THEN
SAI(1) = 0.D0
WT(1) = 2.D0
RETURN
END IF
IF ( N .EQ. 2 ) THEN
SAI(1) = DSQRT(3.D0)/3.D0
WT(1) = 1.D0
END IF
IF ( N .EQ. 3 ) THEN
SAI(1) = DSQRT(3.D0/5.D0)
SAI(2) = 0.D0
WT(1) = 5.D0/ 9.D0
WT(2) = 8.D0/ 9.D0
END IF
IF ( N .EQ. 4 ) THEN
SAI(1) = 0.33998104358485D0
SAI(2) = 0.86113631159405D0
WT(1) = 0.65214515486255D0
WT(2) = 0.34785484513745D0
END IF
IF ( N .EQ. 5 ) THEN
SAI(1) = 0.90617984593866D0
SAI(2) = 0.53846931010568D0
SAI(3) = 0.D0
WT(1) = 0.23692688505619D0
WT(2) = 0.47862867049937D0
WT(3) = 5.12D0 / 9.D0
END IF
IF ( N .EQ. 6 ) THEN
SAI(1) = 0.23861918608319D0
SAI(2) = 0.66120938646626D0
SAI(3) = 0.93246951420315D0
WT(1) = 0.46791393457269D0
WT(2) = 0.36076157304814D0
WT(3) = 0.17132449237917D0
END IF
NN = N / 2
DO I = 1 , NN
J = N - I + 1
SAI(J) = - SAI(I)
WT(J) = WT(I)
END DO
RETURN
END
COS-SIN-INTEGRATION.FOR
DIPOLEANT-EXACT-EZ-BY-COS.FOR
DIPOLEANT-EXACT-EZ-BY-SIN.FOR
DIPOLEANT-NUMERICAL-METHOD2.FOR
Internet College of Finite Element Method
JR2XSO