PROGRAM LANCZOS_PRINCIPLE_BASIC
C=======================================================================
C FORMATION OF ORTHONORMAL VECTOR AND TRI-DAIGONAL MATRIX BY
C LANCZOS PRINCIPAL
C EIGENVALUES ARE SOLVED BY THE FOLLOWING METHOD:
C BISECTION METHOD
C 2011/JAN/25 EIJI FUKUMORI
C=======================================================================
IMPLICIT REAL*8 ( A-H , O-Z )
PARAMETER ( MXN=50, EPS=1.D-13 )
C------- LANCZOS MEMORY
DIMENSION A(MXN,MXN), U(MXN,MXN), ALPHA(MXN), BETA(MXN),
* AU1(MXN), R(MXN), T(MXN,MXN)
C------- BISECTION METHOD MEMORY
DIMENSION F(MXN)
C------- COMMON
DIMENSION EIGEN(MXN)
C=======================================================================
OPEN (1,FILE='LANCZOS-BASIC1.OUT', STATUS='UNKNOWN')
WRITE (1,*) '** FORMATION OF [T] BY LANCZOS METHOD **'
WRITE (1,*) '******* m = n *******'
WRITE (1,*) 'EIGENVALUES BY BISECTION1'
C=======================================================================
C------ INITIALIZATION
C--------- SIZE OF MATRIX [A]
N = 10
C--------- GIVEN [A]
DO I = 1 , N
DO J = 1 , N
K = N-J+1
IF ( I .GT. J ) K = N-I+1
A(I,J) = K
END DO
END DO
WRITE (1,*)'MATRIX [A]'
DO I = 1 , N
WRITE (1,*) (A(I,J),J=1,N)
END DO
C-------- INITIAL VECTOR {U}1 THE LENGTH = 1
ABSU1 = 0.D0
DO I = 1 , N
ABSU1 = + ABSU1 + A(I,I)**2
END DO
ABSU1 = DSQRT (ABSU1)
DO I = 1 , N
U(I,1) = A(I,I)/ABSU1
END DO
WRITE (1,*) 'INITIAL VECTOR {U}1=[U(I,1)]'
WRITE (1,*) (U(I,1),I=1,N)
C******************** STARTS LANCZOS_PRINCIPLE HERE *****
DO IGEN = 1 , N
C
DO I = 1 , N
AU1(I) = 0.D0
DO J = 1 , N
AU1(I) = AU1(I) + A(I,J)*U(J,IGEN)
END DO
END DO
C
ALPHA(IGEN) = 0.D0
DO I = 1 , N
ALPHA(IGEN) = ALPHA(IGEN) + AU1(I)*U(I,IGEN)
END DO
IF ( IGEN .EQ. N ) EXIT
C
DO I = 1 , N
R(I) = AU1(I) - ALPHA(IGEN)*U(I,IGEN)
END DO
IF ( IGEN .GT. 1 ) THEN
DO I = 1 , N
R(I) = R(I) - BETA(IGEN-1)*U(I,IGEN-1)
END DO
END IF
C-------- RE-ORTHOGONALIZATION
DO I = 1 , IGEN
DOTPRDCT = 0.0D0
DO J = 1 , N
DOTPRDCT = DOTPRDCT + U(J,I)*R(J)
END DO
DO J = 1 , N
R(J) = R(J) - DOTPRDCT*U(J,I)
END DO
END DO
C-------- NEW NORMALIZED OTHOGONAL VECTOR
BETA(IGEN) = 0.D0
DO I = 1 , N
BETA(IGEN) = BETA(IGEN) + R(I)*R(I)
END DO
BETA(IGEN) = DSQRT(BETA(IGEN))
DO I = 1 , N
U(I,IGEN+1) = R(I)/BETA(IGEN)
END DO
C
END DO
C******************** END OF LANCZOS_PRINCIPLE *********************
WRITE (1,*) 'RESULT OF [U(I,J)] BY LANCZOS PRINCIPAL'
DO I = 1 , N
WRITE (1,*) ( U(I,J), J = 1 , N )
END DO
C******** FORMATION OF [T] BY MAKING USE OF -------------------------
C---------------------- ALPHAS AND BETAS; I.E.LANCZOS METHOD ********
DO I = 1 , N
DO J = 1 , N
T(I,J) = 0.D0
END DO
T(I,I) = ALPHA(I)
END DO
DO I = 1 , N-1
T(I,I+1) = BETA(I)
T(I+1,I) = BETA(I)
END DO
C-------- PRINTING [T]
WRITE (1,*) 'DIRECT FORMATION OF [T] MATRIX BY LANCZOS METHOD'
DO I = 1 , N
WRITE (1,*) ( T(I,J), J = 1 , N )
END DO
C=======================================================================
C COMPUTATION OF IGENVALUES
C=======================================================================
C------- BISECTION METHOD
CALL BSECTION1 ( EPS, MXN, N, T, F, EIGEN )
WRITE (1,*)
WRITE (1,*) 'EIGENVALUES BY BISECTION METHOD WITH [T]'
WRITE (1,*) 'MODE EIGENVALUES'
DO I = 1 , N
WRITE (1,*) I, EIGEN(I)
END DO
C=======================================================================
CLOSE (1)
STOP 'NORMAL TERMINATION'
END
C
C
SUBROUTINE BSECTION1 ( EPS,MXENGN, NEIGEN, T, F, EIGEN )
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION T(MXENGN,MXENGN), F(MXENGN), EIGEN(MXENGN)
C-------- COMPUTATION OF LIMITS WHERE EIGENVALUES EXIST
BMAX= DMAX1(DABS(T(1,1))+DABS(T(1,2)),
* DABS(T(NEIGEN,NEIGEN))+DABS(T(NEIGEN,NEIGEN-1)) )
DO I=2,NEIGEN-1
BMAX = DMAX1(BMAX,DABS(T(I,I))+
* DABS(T(I,I+1))+DABS(T(I,I-1)))
END DO
C=========================================================================
DO MODE = 1, NEIGEN
A1 = 0.D0
A2 = BMAX
C--- BEGIN OF DO WHILE -----
DO WHILE ( DABS(A2-A1)/BMAX .GT. EPS )
A3 = (A1+A2)/2.0D0
C------- FORMING STURM SEQUENCES
C------- P-0, P-1, P-2, ......., P-NEIGEN
F(1) = T(1,1)-A3
F(2) = (T(2,2)-A3)*F(1) - T(1,2)**2
DO J = 3 , NEIGEN
F(J) = (T(J,J)-A3)*F(J-1) - T(J-1,J)**2*F(J-2)
END DO
C-------- COUNT NUMBER OF SIGN-CHANGES IN F(I)
NA3 = 0
P = 1.D0
DO J = 1 , NEIGEN
IF ( P*F(J) .LT. 0.D0 ) THEN
NA3 = NA3 + 1
P = -P
END IF
END DO
C-------- NARROW DOWN LIMTS WHERE EIGENVALUES OF MODE
IF ( NA3 .LT. MODE ) THEN
A1=A3
ELSE
A2=A3
END IF
END DO
C--- END OF DO WHILE -----
EIGEN(MODE)=A3
END DO
RETURN
END