PROGRAM WRM2X2H C======================================================================= C SHAPE FUNCTIONA ARE NOT EQUAL TO THE WEIGHTING FUNCTIONS. C SOLUTION OF D2U/DXDX + ALPHASQ*U = 0 USING WEIGHTED RESIDUAL METHOD C WITH AN APPROXIMATING FUNCTION OF U(X)=F0(X)+A1*F1(X)+A2*F2(X) C AND BOUNDARY CONDITIONS OF U(0)=0. & U(1)=1. C ******* NON-GALERKINS WEIGHTING FUNCTIONS H1 AND H2 ******** C -------------- VARIABLE DEFNITION ----------- 6/1/1993 EIJI FUKUMORI C XST & XEN = INTEGRATION LIMITS. NSEG = NUMBER OF SEGMENTS IN LIMITS. C UNKNOWN COEFFICENT (A1&A2) IN THE APPROXIMATING FUNCTION IS EVALUATED C BY THE FOLLOWING SIMULTANEOUSEQUATION: B1 * A1 + B2 * A2 + C1 = 0. C B3 * A1 + B4 * A2 + C2 = 0. C======================================================================= IMPLICIT REAL * 8 ( A-H , O-Z ) PARAMETER ( N = 3, NSEG=100, MULTI=10 ) DIMENSION SAI(N) , W(N) COMMON / DEL /DELTAX /DOMAIN /RL /BORDER/U0,UL COMMON /CONST/ ALPHASQ EXTERNAL F0, F1, F2, H1, H2 C======================================================================= C THREE-SAMPLING-POINT GAUSS INTEGRATION METHOD C N = NUMBER OF SAMPLING POINTS IN EACH SEGMENET C SAI(I) & W(I) = NON-DIMENSIONALIZED COORDINATE & WEIGHTING FACTOR DATA SAI/-0.7745966692415D0,0.0000000000000D0, 0.7745966692415D0/ DATA W / 0.5555555555555D0,0.8888888888888D0, 0.5555555555555D0/ C======================================================================= C MATERIAL DATA AND BOUNDARY VALUES ALPHASQ=1.D0 XST=0.D0 XEN=1.D0 U0 = 0.D0 UL = 1.D0 C======================================================================= OPEN ( 1, FILE='WRM2X2NONGALERKIN.FEM',STATUS='UNKNOWN' ) WRITE(1,*)' ==== DIRICHLET - DIRICHLET PROBLEM ====' WRITE(1,*)' ---- NON-GALERKINS WEIGHTING FUNCTION H1 AND H2----' WRITE(1,*)' APPROXIMATING FUNCTION: F0(X) + A1*F1(X) + A2*F2(X)' WRITE(1,*)' WHERE F0(X)=X, F1(X)=X*(1-X), & F2(X)=X*X*(1-X)' C======================================================================= C DELTAX = SPACIAL DEFERENTIAL LENGTH FOR DERIVATIVE EVALUATION. RL = XEN - XST DELTAX = RL / ( MULTI * NSEG ) C======================================================================= COMPUTATION OF H(F0,F1) H(F1,F1) H(F1,F1) H(F1,F2) H(F2,F1) H(F2,F2) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F0, H1, C1 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F0, H2, C2 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F1, H1, B1 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F1, H2, B3 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F2, H1, B2 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F2, H2, B4 ) C======================================================================= C EVALUATION OF UNKNOWN A1 AND A2 IN THE APPROXIMATING FUNCTION U(X) A1 = - ( C1*B4 - B2*C2 ) / ( B1*B4 - B2*B3 ) A2 = - ( B1*C2 - C1*B3 ) / ( B1*B4 - B2*B3 ) C======================================================================= C PRINTING RESULTS WRITE (1,100) B1, B2, C1, B3, B4, C2 WRITE (1,110) A1, A2 100 FORMAT( 1X,F15.10,1X,'* A1 +',F15.10,'* A2 +',F15.10,' = 0' ) 110 FORMAT(2X,'U(X) = F0(X) +',F15.10,' * F1(X) +',F15.10,'*F2(X)') CALL OUTPUT ( XST, XEN, A1, A2 ) CLOSE (1) STOP END C C SUBROUTINE INTE ( ALPHASQ,XST,XEN,NSEG, N,SAI,W, G1,G2, TOTAL ) IMPLICIT REAL * 8 ( A-H , O-Z ) DIMENSION SAI(N) , W(N) EXTERNAL G1, G2 TOTAL = 0. DX = ( XEN - XST ) / NSEG DO I = 1 , NSEG X1 = DX*(I-1) X2 = X1 + DX SUM = 0. SH = ( X2 - X1 ) / 2.D0 AVE = ( X1 + X2 ) / 2.D0 DO J = 1 , N X = SH * SAI(J) + AVE SUM = SUM + (-DERIV(G1,X)*DERIV(G2,X)+ALPHASQ*G1(X)*G2(X)) * W(J) END DO TOTAL = TOTAL + SH * SUM END DO RETURN END C C FUNCTION F0(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL /BORDER/U0,UL F0 = U0*(1.D0-X/RL) + UL*(X/RL) RETURN END C C FUNCTION F1(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL F1 = X/RL * ( 1.D0 - X/RL ) RETURN END C C FUNCTION F2(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL F2 = X/RL * X/RL * ( 1.D0- X/RL ) RETURN END C C FUNCTION DERIV(F,X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DEL / DELTAX EXTERNAL F DERIV = ( F(X+DELTAX) - F(X-DELTAX) ) / ( 2.*DELTAX ) RETURN END C C FUNCTION H1(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL H1 = X/RL * ( 1.D0 - (X/RL)**2 ) RETURN END C C FUNCTION H2(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL H2 = X/RL * X/RL * ( 1.D0- X/RL )**2 RETURN END C C SUBROUTINE OUTPUT ( XST,XEN,A1,A2 ) IMPLICIT REAL * 8 ( A-H , O-Z ) EXTERNAL F0, F1, F2 NDIV = 10 DX = ( XEN - XST ) / NDIV WRITE(1,*)'X-COORDINATE U(X) DU/DX EXACT(X) |U(X)-EXACT(X)|' DO I = 1 , NDIV+1 X = DX*(I-1) + XST UX = F0(X) + A1*F1(X) + A2*F2(X) DUDX = DERIV(F0,X)+A1*DERIV(F1,X)+A2*DERIV(F2,X) WRITE(1,*) X, UX, DUDX, EXACT(X), DABS(UX-EXACT(X)) END DO RETURN END C C FUNCTION EXACT(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DEL /DELTAX /DOMAIN /RL /BORDER/U0,UL COMMON /CONST/ ALPHASQ AL = DSQRT(ALPHASQ) A = U0 B = (UL-U0*DCOS(AL*RL))/DSIN(AL*RL) EXACT = A*DCOS(AL*X) + B*DSIN(AL*X) RETURN END