PROGRAM WRM2X2DD C======================================================================= C SOLUTION OF D2U/DXDX + ALPHASQ*U = 0 USING WEIGHTED RESIDUAL METHOD C WITH AN APPROXIMATING FUNCTION OF U(X)=F0(X)+A1*F1(X)+A2*F2(X) C AND BOUNDARY CONDITIONS OF U(0)=1. & U(1)=1. C================= DIRICHLET BC ------ DIRICHLET BC ==================== C -------------- VARIABLE DEFNITION ----------- 10/13/2024 EIJI FUKUMORI C XST & XEN = INTEGRATION LIMITS. NSEG = NUMBER OF SEGMENTS IN LIMITS. C UNKNOWN COEFFICENT (A1&A2) IN THE APPROXIMATING FUNCTION IS EVALUATED C BY 2X2 SIMULTANEOUSEQUATION. C======================================================================= IMPLICIT REAL * 8 ( A-H , O-Z ) PARAMETER ( N = 6, NSEG=1000, MULTI=10 ) DIMENSION SAI(N) , W(N) COMMON / DEL /DELTAX /DOMAIN /RL /BORDER/U0,UL COMMON /CONST/ ALPHASQ EXTERNAL F0, F1, F2 C======================================================================= C THREE-SAMPLING-POINT GAUSS INTEGRATION METHOD C N = NUMBER OF SAMPLING POINTS IN EACH SEGMENET C SAI(I) & W(I) = NON-DIMENSIONALIZED COORDINATE & WEIGHTING FACTOR C======================================================================= CALL GRULE ( N , SAI , W ) C======================================================================= C MATERIAL DATA AND BOUNDARY VALUES ALPHASQ=1.D0 XST=0.D0 XEN=1.D0 U0 = 1.D0 UL = 1.D0 C======================================================================= OPEN ( 1, FILE='WRM2X2DD.FEM',STATUS='UNKNOWN' ) WRITE(1,*)'==== DIRICHLET - DIRICHLET PROBLEM ====' WRITE(1,*)'---- GALERKIN WEIGHTING FUNCTION ----' WRITE(1,*)'APPROXIMATING FUNCTION: F0(X) + A1*F1(X) + A2*F2(X)' WRITE(1,*)'WHERE F0(X) = U(0)*X/L + U(L)*(1-X/L), ' WRITE(1,*)'F1(X) = (X/L)*(1-X/L), ' WRITE(1,*)'AND F2(X) = ((X/L)*(1-X/L))**2' WRITE(1,*)'SQUARE OF ALPHA =',ALPHASQ WRITE(1,*)'X-COORDINATE OF LEFT END BOUNDARY =',XST WRITE(1,*)'X-COORDINATE OF RIGHT END BOUNDARY =',XEN WRITE(1,*)'U(0) =',U0 WRITE(1,*)'U(L) =',UL C======================================================================= C DELTAX = SPACIAL DEFERENTIAL LENGTH FOR DERIVATIVE EVALUATION. RL = XEN - XST DELTAX = RL / ( MULTI * NSEG ) C======================================================================= WRITE(1,*)'LENGTH OF DOMAIN =',RL WRITE(1,*)' NUMBER OF SEGMENTS FOR INTEGRATION =', NSEG WRITE(1,*)' DX FOR DERIVATIVE EVALUATION =', DELTAX C======================================================================= COMPUTATION OF H(F0,F1) H(F1,F1) H(F1,F1) H(F1,F2) H(F2,F1) H(F2,F2) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F0, F1, C1 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F0, F2, C2 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F1, F1, B1 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F1, F2, B3 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F2, F1, B2 ) CALL INTE ( ALPHASQ, XST, XEN, NSEG, N, SAI, W, F2, F2, B4 ) C======================================================================= C EVALUATION OF UNKNOWN A1 AND A2 IN THE APPROXIMATING FUNCTION U(X) A1 = - ( C1*B4 - B2*C2 ) / ( B1*B4 - B2*B3 ) A2 = - ( B1*C2 - C1*B3 ) / ( B1*B4 - B2*B3 ) C======================================================================= C PRINTING RESULTS WRITE (1,*) 'H(F0,F1)=', C1 WRITE (1,*) 'H(F0,F2)=', C2 WRITE (1,*) 'H(F1,F1)=', B1 WRITE (1,*) 'H(F1,F2)=', B3 WRITE (1,*) 'H(F2,F1)=', B2 WRITE (1,*) 'H(F2,F2)=', B4 C WRITE (1,*) 'A1=',A1, ' A2=', A2 WRITE (1,*) 'U(X) = F0(X)+',A1, '*F1(X)+',A2, '*F2(X)' C CALL OUTPUT ( XST, XEN, A1, A2 ) CLOSE (1) STOP 'NORMAL TERMINATION' END C C SUBROUTINE INTE ( ALPHASQ,XST,XEN,NSEG, N,SAI,W, G1,G2, TOTAL ) IMPLICIT REAL * 8 ( A-H , O-Z ) DIMENSION SAI(N) , W(N) EXTERNAL G1, G2 TOTAL = 0.D0 DX = ( XEN - XST ) / NSEG DO I = 1 , NSEG X1 = DX*(I-1) + XST X2 = X1 + DX SUM = 0.D0 SH = ( X2 - X1 ) / 2.D0 AVE = ( X1 + X2 ) / 2.D0 DO J = 1 , N X = SH * SAI(J) + AVE SUM = SUM + (-DERIV(G1,X)*DERIV(G2,X)+ALPHASQ*G1(X)*G2(X)) * W(J) END DO TOTAL = TOTAL + SH * SUM END DO RETURN END C C FUNCTION F0(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL /BORDER/U0,UL F0 = U0*(1.D0-X/RL) + UL*(X/RL) RETURN END C C FUNCTION F1(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL F1 = X/RL * ( 1.D0 - X/RL ) RETURN END C C FUNCTION F2(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DOMAIN / RL F2 = F1(X)**2 RETURN END C C FUNCTION DERIV(F,X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DEL / DELTAX EXTERNAL F FIP2 = F(X+2.D0*DELTAX) FIP1 = F(X+ DELTAX) FIN1 = F(X- DELTAX) FIN2 = F(X-2.D0*DELTAX) DERIV = (-FIP2+8.D0*FIP1-8.D0*FIN1+FIN2 )/(12.D0*DELTAX) C DERIV = ( F(X+DELTAX) - F(X-DELTAX) ) / ( 2.D0*DELTAX ) RETURN END C C SUBROUTINE OUTPUT ( XST,XEN,A1,A2 ) IMPLICIT REAL * 8 ( A-H , O-Z ) EXTERNAL F0, F1, F2 NDIV = 10 DX = ( XEN - XST ) / NDIV WRITE(1,*)'X-COORDINATE U(X) DU/DX EXACT(X) |U(X)-EXACT(X)|' DO I = 1 , NDIV+1 X = DX*(I-1) + XST UX = F0(X) + A1*F1(X) + A2*F2(X) DUDX = DERIV(F0,X)+A1*DERIV(F1,X)+A2*DERIV(F2,X) WRITE(1,*) X, UX, DUDX, EXACT(X), DABS(UX-EXACT(X)) END DO RETURN END C C FUNCTION EXACT(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DEL /DELTAX /DOMAIN /RL /BORDER/U0,UL COMMON /CONST/ ALPHASQ AL = DSQRT(ALPHASQ) A = U0 B = (UL-U0*DCOS(AL*RL))/DSIN(AL*RL) EXACT = A*DCOS(AL*X) + B*DSIN(AL*X) RETURN END C C SUBROUTINE GRULE ( N , SAI , W ) IMPLICIT REAL*8 ( A-H , O-Z ) DIMENSION SAI(N) , W(N) IF ( N .LT. 2 ) STOP'N<2' IF ( N .GT. 6 ) STOP'N>6' IF ( N .EQ. 2 ) THEN SAI(1) = DSQRT(3.D0)/3.D0 W(1) = 1.D0 SAI(2) = - SAI(1) W(2) = W(1) RETURN END IF IF ( N .EQ. 3 ) THEN SAI(1) = DSQRT(15.D0)/5.D0 SAI(2) = 0.D0 W(1) = 5.D0/ 9.D0 W(2) = 8.D0/ 9.D0 SAI(3) = - SAI(1) W(3) = W(1) RETURN END IF IF ( N .EQ. 4 ) THEN SAI(1) = 0.33998104358485D0 SAI(2) = 0.86113631159405D0 W(1) = 0.65214515486254D0 W(2) = 0.34785484513745D0 SAI(3) = -SAI(2) SAI(4) = -SAI(1) W(3) = W(2) W(4) = W(1) RETURN END IF IF ( N .EQ. 5 ) THEN SAI(1) = 0.90617984593866D0 SAI(2) = 0.53846931010568D0 SAI(3) = 0.D0 W(1) = 0.23692688505619D0 W(2) = 0.47862867049937D0 W(3) = 5.12D0 / 9.D0 SAI(4) = -SAI(2) SAI(5) = -SAI(1) W(4) = W(2) W(5) = W(1) RETURN END IF IF ( N .EQ. 6 ) THEN SAI(1) = 0.23861918608320D0 SAI(2) = 0.66120938646626D0 SAI(3) = 0.93246951420315D0 W(1) = 0.46791393457269D0 W(2) = 0.36076157304814D0 W(3) = 0.17132449237917D0 SAI(4) = -SAI(1) SAI(5) = -SAI(2) SAI(6) = -SAI(3) W(4) = W(1) W(5) = W(2) W(6) = W(3) END IF RETURN END