PROGRAM THIRTN C======================================================================= C SOLUTION OF D2U/DXDX + ALPHA*U = 0 USING WEIGHTED RESIDUAL METHOD C WITH AN APPROXIMATING FUNCTION OF U(X)=F0(X)+U(L/2)*F1(X) C AND BOUNDARY CONDITIONS OF U(0)=READ IN & U(1)=1; C -------------- VARIABLE DEFNITION ----------- Dec./2004 EIJI FUKUMORI C XST & XEN: INTEGRATION LIMITS; NSEG: NUMBER OF SEGMENTS IN LIMITS; C UNKNOWN COEFFICENT (A1) IN THE APPROXIMATING FUNCTION IS EVALUATED C BY THE FOLLOWING EQUATION: B1 * A1 + C1 = 0. C======================================================================= IMPLICIT REAL * 8 ( A-H , O-Z ) PARAMETER ( N = 3, NSEG=100, MULTI=10 ) DIMENSION SAI(N) , W(N) COMMON / DEL / DELTAX /DOMAIN/ RL /BORDER/ U0, UL EXTERNAL F0, F1 C======================================================================= C THREE-SAMPLING-POINT GAUSS INTEGRATION METHOD C N: NUMBER OF SAMPLING POINTS IN EACH SEGMENET C SAI(I) & W(I): NON-DIMENSIONALIZED COORDINATE & WEIGHTING FACTOR DATA SAI/-0.7745966692415D0,0.0000000000000D0, 0.7745966692415D0/ DATA W / 0.5555555555555D0,0.8888888888888D0, 0.5555555555555D0/ C======================================================================= C MATERIAL DATA AND BOUNDARY VALUES ALPHA=1. XST=0. XEN=1. UL = 1. WRITE (*,240) 240 FORMAT( 'Type in U0= ' $ ) READ(*,*) U0 C======================================================================= OPEN ( 1, FILE='THIRTN.FEM',STATUS='UNKNOWN' ) WRITE(1,*)' ==== DIRICHLET - DIRICHLET PROBLEM ====' WRITE(1,*)' ---- GALERKIN WEIGHTING FUNCTION ----' WRITE(1,*)' APPROXIMATING FUNCTION: F0(X) + A1*F1(X)' WRITE(1,*)' WHERE F0(X) = U0*N1BETWEEN 0 AND L/2' WRITE(1,*)' = UL*N2 BETWEEN L/2 AND L' WRITE(1,*)' F1(X) = N2BETWEEN 0 AND L/2 =N1 BETWEEN L/2 AND L' WRITE(1,*)' N1(X) = (1-X/(L/2)), N2=(X-L/2)/(L/2)' C======================================================================= C DELTAX: SPACIAL DEFERENTIAL LENGTH FOR DERIVATIVE EVALUATION. RL = XEN - XST DELTAX = RL / ( MULTI * NSEG ) C======================================================================= WRITE(1,*)' X AT LEFT END =', XST WRITE(1,*)' X AT RIGHT END =', XEN WRITE(1,*)' ALPHA =', ALPHA WRITE(1,*)' NUMBER OF SEGMENTS =', NSEG WRITE(1,*)' DX FOR DERIVATIVE EVALUATION =', DELTAX C======================================================================= C COMPUTATION OF H(F0,F1) AND H(F1,F1) CALL INTE ( ALPHA, XST, XEN, NSEG, N, SAI, W, F0, F1, C1 ) CALL INTE ( ALPHA, XST, XEN, NSEG, N, SAI, W, F1, F1, B1 ) C======================================================================= C EVALUATION OF UNKNOWN A1 IN THE APPROXIMATING FUNCTION U(X) A1 = - C1 / B1 C======================================================================= C PRINTING RESULTS WRITE (1,100) B1, C1 WRITE (1,110) A1 100 FORMAT ( 1X, F20.10, 1X, '* A1 +', F20.10, ' = 0' ) 110 FORMAT ( 2X, 'U(X) = F0(X) + ',F15.10, ' * F1(X)' ) CALL OUTPUT ( XST, XEN, A1 ) CLOSE (1) STOP END C C SUBROUTINE INTE ( ALPHA,XST,XEN,NSEG, N,SAI,W, G1,G2, TOTAL ) IMPLICIT REAL * 8 ( A-H , O-Z ) DIMENSION SAI(N) , W(N) EXTERNAL G1, G2 TOTAL = 0. DX = ( XEN - XST ) / NSEG DO I = 1 , NSEG X1 = DX*(I-1) + XST X2 = X1 + DX SUM = 0. SH = ( X2 - X1 ) / 2. AVE = ( X1 + X2 ) / 2. DO J = 1 , N X = SH * SAI(J) + AVE SUM = SUM + (-DERIV(G1,X)*DERIV(G2,X)+ALPHA*G1(X)*G2(X)) * W(J) END DO TOTAL = TOTAL + SH * SUM END DO RETURN END C C FUNCTION F0(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON /DOMAIN/ RL COMMON /BORDER/ U0, UL HALFWAY = RL/2. IF ( X .LE. HALFWAY ) THEN F0 = U0*(1-X/HALFWAY) ELSE F0 = UL*((X-HALFWAY )/HALFWAY) ENDIF RETURN END C C FUNCTION F1(X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON /DOMAIN/ RL HALFWAY = RL/2. IF ( X .LE. HALFWAY ) THEN F1 = X/HALFWAY ELSE F1 = 1.-(X-HALFWAY )/HALFWAY ENDIF RETURN END C C FUNCTION DERIV(F,X) IMPLICIT REAL * 8 ( A-H , O-Z ) COMMON / DEL / DELTAX EXTERNAL F DERIV = ( F(X+DELTAX) - F(X-DELTAX) ) / ( 2.*DELTAX ) RETURN END C C SUBROUTINE OUTPUT ( XST,XEN,A1 ) IMPLICIT REAL * 8 ( A-H , O-Z ) EXTERNAL F0, F1 NDIV = 10 DX = ( XEN - XST ) / NDIV DO I = 1 , NDIV+1 X = DX*(I-1) + XST UX = F0(X) + A1*F1(X) DUDX = DERIV(F0,X)+A1*DERIV(F1,X) WRITE(1,100)X, UX, DUDX 100 FORMAT ( 'X=',G15.7,' U(X)=',G15.7,' DU/DX=',G15.7 ) END DO RETURN END