==== DIRICHLET - DIRICHLET PROBLEM DOF=4 ==== ---- GALERKIN WEIGHTING FUNCTION ---- APPROXIMATING FUNCTION: F0(X)+A1*F1(X)+A2*F2(X)+..... WHERE F0(X) = U(0)*X/L + U(L)*(1-X/L) F1(X) = (X/L)*(1-X/L) F2(X) = ((X/L)**K*(1-X/L))**2 F3(X) = ((X/L)**K*(1-X/L))**3 F4(X) = ((X/L)**K*(1-X/L))**4 SQUARE OF ALPHA = 1. X-COORDINATE OF LEFT END BOUNDARY = 0. X-COORDINATE OF RIGHT END BOUNDARY = 1. U(0) = 1. U(L) = 1. LENGTH OF DOMAIN = 1. NUMBER OF SEGMENTS FOR INTEGRATION = 10000 DX FOR DERIVATIVE EVALUATION = 0.00001 A1= 0.546302489783244 A2= 0.04630249267270198 A3= 0.00155452798517331 A4= 0.000028054257250811733 U(X)=F0(X)+ 0.546302489783244 *F1(X)+ 0.04630249267270198 *F2(X)+ 0.00155452798517331 *F3(X)+ 0.000028054257250811733 *F4(X) X-COORDINATE U(X) DU/DX EXACT(X) |U(X)-EXACT(X)| 0. 1. 0.546302489783244 1. 0. 0.1 1.0495434093626819 0.4437398362400131 1.0495434093618006 8.812950369474493E-13 0.2 1.0886001279100057 0.3367434808976995 1.0886001279101831 1.7741363933510002E-13 0.30000000000000004 1.1167799138252181 0.2263824960002804 1.1167799138238472 1.3709033908071433E-12 0.4 1.1338012039980856 0.11375957199815782 1.1338012039969423 1.1433076707589862E-12 0.5 1.1394939273245657 0. 1.1394939273245492 1.6431300764452317E-14 0.6000000000000001 1.1338012039980856 -0.113759571998158 1.1338012039969423 1.1433076707589862E-12 0.7000000000000001 1.1167799138252181 -0.22638249599922633 1.1167799138238472 1.3709033908071433E-12 0.8 1.0886001279100057 -0.3367434808954934 1.0886001279101831 1.7741363933510002E-13 0.9 1.0495434093626819 -0.4437398362373152 1.0495434093618004 8.815170815523743E-13 1. 1. -0.5463024897842959 1. 0.