==== DIRICHLET - DIRICHLET PROBLEM ==== ---- GALERKIN WEIGHTING FUNCTION ---- APPROXIMATING FUNCTION: F0(X) + A1*F1(X) WHERE F0(X) = U0*N1BETWEEN 0 AND L/2 = UL*N2 BETWEEN L/2 AND L F1(X) = N2BETWEEN 0 AND L/2 =N1 BETWEEN L/2 AND L N1(X) = (1-X/(L/2)), N2=(X-L/2)/(L/2) X AT LEFT END = 0.000000000000000E+000 X AT RIGHT END = 1.00000000000000 ALPHA = 1.00000000000000 NUMBER OF SEGMENTS = 100 DX FOR DERIVATIVE EVALUATION = 1.000000000000000E-003 -3.6666666667 * A1 + 2.0833333333 = 0 U(X) = F0(X) + 0.5681818182 * F1(X) X= 0.000000 U(X)= 0.000000 DU/DX= 1.136364 X= 0.1000000 U(X)= 0.1136364 DU/DX= 1.136364 X= 0.2000000 U(X)= 0.2272727 DU/DX= 1.136364 X= 0.3000000 U(X)= 0.3409091 DU/DX= 1.136364 X= 0.4000000 U(X)= 0.4545455 DU/DX= 1.136364 X= 0.5000000 U(X)= 0.5681818 DU/DX= 1.000000 X= 0.6000000 U(X)= 0.6545455 DU/DX= 0.8636364 X= 0.7000000 U(X)= 0.7409091 DU/DX= 0.8636364 X= 0.8000000 U(X)= 0.8272727 DU/DX= 0.8636364 X= 0.9000000 U(X)= 0.9136364 DU/DX= 0.8636364 X= 1.000000 U(X)= 1.000000 DU/DX= 0.8636364