==== DIRICHLET - DIRICHLET PROBLEM ====
   ---- GALERKIN WEIGHTING FUNCTION ----
  APPROXIMATING FUNCTION: F0(X) + A1*F1(X)
  WHERE F0(X) = U0*N1BETWEEN 0 AND L/2
                     = UL*N2 BETWEEN L/2 AND L
  F1(X) = N2BETWEEN 0 AND L/2  =N1 BETWEEN L/2 AND L
  N1(X) = (1-X/(L/2)), N2=(X-L/2)/(L/2)
  X AT LEFT  END =  0.000000000000000E+000
  X AT RIGHT END =   1.00000000000000     
  ALPHA =   1.00000000000000     
  NUMBER OF SEGMENTS =         100
  DX FOR DERIVATIVE EVALUATION =  1.000000000000000E-003
        -3.6666666667 * A1 +        2.0833333333 = 0
  U(X) = F0(X) +    0.5681818182 * F1(X)
X=   0.000000       U(X)=   0.000000       DU/DX=   1.136364    
X=  0.1000000       U(X)=  0.1136364       DU/DX=   1.136364    
X=  0.2000000       U(X)=  0.2272727       DU/DX=   1.136364    
X=  0.3000000       U(X)=  0.3409091       DU/DX=   1.136364    
X=  0.4000000       U(X)=  0.4545455       DU/DX=   1.136364    
X=  0.5000000       U(X)=  0.5681818       DU/DX=   1.000000    
X=  0.6000000       U(X)=  0.6545455       DU/DX=  0.8636364    
X=  0.7000000       U(X)=  0.7409091       DU/DX=  0.8636364    
X=  0.8000000       U(X)=  0.8272727       DU/DX=  0.8636364    
X=  0.9000000       U(X)=  0.9136364       DU/DX=  0.8636364    
X=   1.000000       U(X)=   1.000000       DU/DX=  0.8636364