WELCOME TO PARABOLIC ELEMENT BEM PROGRAM
I N P U T D A T A
BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
IF ELM TYPE(I) = 1, THEN DIRICHLIT.
IF ELM TYPE(I) = 2, THEN NEUMANN.
NUMBER OF ELEMENTS= 4
ELM # ---> ELEMENT NUMBER
ELM # I J K ELM TYPE BOUNDARY VALUES
1 1 2 3 1 0.00000 0.00000 0.00000
2 3 4 5 2 0.00000 0.00000 0.00000
3 5 6 7 1 100.00000 100.00000 100.00000
4 7 8 1 2 0.00000 0.00000 0.00000
NUMBER OF BOUNDARY NODES= 8
NODE X-COORDINATE Y-COORDINATE
1 0.00000000 0.00000000
2 5.00000000 0.00000000
3 10.00000000 0.00000000
4 10.00000000 5.00000000
5 10.00000000 10.00000000
6 5.00000000 10.00000000
7 0.00000000 10.00000000
8 0.00000000 5.00000000
NUMBER OF INTERIOR POINTS= 5
POINT X-COORDINATE Y-COORDINATE
1 5.00000000 2.50000000
2 7.50000000 5.00000000
3 5.00000000 7.50000000
4 2.50000000 5.00000000
5 5.00000000 5.00000000
END OF INPUT-DATA ECHO PRINT
*** N U M E R I C A L S O L U T I O N ***
-- FLUX ON BOUNDARY --
ELEMENT NODE-I NODE-J NODE-K DP/DN(I) DP/DN(J) DP/DN(K)
1 1 2 3 10.00000114 9.999999547 10.00000114
2 3 4 5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3 5 6 7 -10.00000114 -9.999999547 -10.00000114
4 7 8 1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --
NODE FREE TERM POTENTIAL
1 0.250000 0.00000000E+00
2 0.500000 0.00000000E+00
3 0.250000 0.00000000E+00
4 0.500000 50.000000
5 0.250000 100.00000
6 0.500000 100.00000
7 0.250000 100.00000
8 0.500000 50.000000
-- POTENTIAL AT INTERNAL POINT --
POINT X-COORD Y-COORD POTENTIAL
1 5.0000 2.5000 25.000
2 7.5000 5.0000 50.000
3 5.0000 7.5000 75.000
4 2.5000 5.0000 50.000
5 5.0000 5.0000 50.000