WELCOME TO PARABOLIC ELEMENT BEM PROGRAM
I N P U T D A T A
BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
IF ELM TYPE(I) = 1, THEN DIRICHLIT.
IF ELM TYPE(I) = 2, THEN NEUMANN.
NUMBER OF ELEMENTS= 4
ELM # ---> ELEMENT NUMBER
ELM # I J K ELM TYPE BOUNDARY VALUES
1 1 2 3 1 0.00000 0.00000 0.00000
2 3 4 5 1 0.00000 0.00000 0.00000
3 5 6 7 1 0.00000 0.00000 0.00000
4 7 8 1 1 0.00000 0.00000 0.00000
NUMBER OF BOUNDARY NODES= 8
NODE X-COORDINATE Y-COORDINATE
1 10.00000000 0.00000000
2 7.07000000 7.07000000
3 0.00000000 10.00000000
4 -7.07000000 7.07000000
5 -10.00000000 0.00000000
6 -7.07000000 -7.07000000
7 0.00000000 -10.00000000
8 7.07000000 -7.07000000
NUMBER OF INTERIOR POINTS= 8
POINT X-COORDINATE Y-COORDINATE
1 2.00000000 0.00000000
2 4.00000000 0.00000000
3 6.00000000 0.00000000
4 8.00000000 0.00000000
5 0.00000000 2.00000000
6 0.00000000 4.00000000
7 0.00000000 6.00000000
8 0.00000000 8.00000000
==== POINT SOURCES =====
X-COORDINATE Y-COORDINATE MAGNITUDE
0.00000000E+00 0.00000000E+00 1000.0000
END OF INPUT-DATA ECHO PRINT
*** N U M E R I C A L S O L U T I O N ***
-- FLUX ON BOUNDARY --
ELEMENT NODE-I NODE-J NODE-K DP/DN(I) DP/DN(J) DP/DN(K)
1 1 2 3 16.07565547 15.99393175 16.07565547
2 3 4 5 16.07565547 15.99393175 16.07565547
3 5 6 7 16.07565547 15.99393175 16.07565547
4 7 8 1 16.07565547 15.99393175 16.07565547
-- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --
NODE FREE TERM POTENTIAL
1 0.470138 0.00000000E+00
2 0.500000 0.00000000E+00
3 0.470138 0.00000000E+00
4 0.500000 0.00000000E+00
5 0.470138 0.00000000E+00
6 0.500000 0.00000000E+00
7 0.470138 0.00000000E+00
8 0.500000 0.00000000E+00
-- POTENTIAL AT INTERNAL POINT --
POINT X-COORD Y-COORD POTENTIAL
1 2.0000 0.00000E+00 255.67
2 4.0000 0.00000E+00 145.34
3 6.0000 0.00000E+00 80.790
4 8.0000 0.00000E+00 34.980
5 0.00000E+00 2.0000 255.67
6 0.00000E+00 4.0000 145.34
7 0.00000E+00 6.0000 80.790
8 0.00000E+00 8.0000 34.980