WELCOME TO PARABOLIC ELEMENT BEM PROGRAM I N P U T D A T A BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS. IF ELM TYPE(I) = 1, THEN DIRICHLIT. IF ELM TYPE(I) = 2, THEN NEUMANN. NUMBER OF ELEMENTS= 4 ELM # ---> ELEMENT NUMBER ELM # I J K ELM TYPE BOUNDARY VALUES 1 1 2 3 1 0.00000 0.00000 0.00000 2 3 4 5 1 0.00000 0.00000 0.00000 3 5 6 7 1 0.00000 0.00000 0.00000 4 7 8 1 1 0.00000 0.00000 0.00000 NUMBER OF BOUNDARY NODES= 8 NODE X-COORDINATE Y-COORDINATE 1 10.00000000 0.00000000 2 7.07000000 7.07000000 3 0.00000000 10.00000000 4 -7.07000000 7.07000000 5 -10.00000000 0.00000000 6 -7.07000000 -7.07000000 7 0.00000000 -10.00000000 8 7.07000000 -7.07000000 NUMBER OF INTERIOR POINTS= 8 POINT X-COORDINATE Y-COORDINATE 1 2.00000000 0.00000000 2 4.00000000 0.00000000 3 6.00000000 0.00000000 4 8.00000000 0.00000000 5 0.00000000 2.00000000 6 0.00000000 4.00000000 7 0.00000000 6.00000000 8 0.00000000 8.00000000 ==== POINT SOURCES ===== X-COORDINATE Y-COORDINATE MAGNITUDE 0.00000000E+00 0.00000000E+00 1000.0000 END OF INPUT-DATA ECHO PRINT *** N U M E R I C A L S O L U T I O N *** -- FLUX ON BOUNDARY -- ELEMENT NODE-I NODE-J NODE-K DP/DN(I) DP/DN(J) DP/DN(K) 1 1 2 3 16.07565547 15.99393175 16.07565547 2 3 4 5 16.07565547 15.99393175 16.07565547 3 5 6 7 16.07565547 15.99393175 16.07565547 4 7 8 1 16.07565547 15.99393175 16.07565547 -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS -- NODE FREE TERM POTENTIAL 1 0.470138 0.00000000E+00 2 0.500000 0.00000000E+00 3 0.470138 0.00000000E+00 4 0.500000 0.00000000E+00 5 0.470138 0.00000000E+00 6 0.500000 0.00000000E+00 7 0.470138 0.00000000E+00 8 0.500000 0.00000000E+00 -- POTENTIAL AT INTERNAL POINT -- POINT X-COORD Y-COORD POTENTIAL 1 2.0000 0.00000E+00 255.67 2 4.0000 0.00000E+00 145.34 3 6.0000 0.00000E+00 80.790 4 8.0000 0.00000E+00 34.980 5 0.00000E+00 2.0000 255.67 6 0.00000E+00 4.0000 145.34 7 0.00000E+00 6.0000 80.790 8 0.00000E+00 8.0000 34.980