WELCOME TO PARABOLIC ELEMENT BEM PROGRAM

                                I N P U T   D A T A
          BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
          BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
                IF ELM TYPE(I) = 1, THEN DIRICHLIT.
                IF ELM TYPE(I) = 2, THEN NEUMANN.


          NUMBER OF ELEMENTS=    8

                    ELM # ---> ELEMENT NUMBER
          ELM #    I    J    K ELM TYPE        BOUNDARY VALUES
              1    1    2    3        1   0.00000   0.00000   0.00000
              2    3    4    5        1   0.00000   0.00000   0.00000
              3    5    6    7        1   0.00000   0.00000   0.00000
              4    7    8    1        1   0.00000   0.00000   0.00000
              5    9   10   11        1   1.00000   1.00000   1.00000
              6   11   12   13        1   1.00000   1.00000   1.00000
              7   13   14   15        1   1.00000   1.00000   1.00000
              8   15   16    9        1   1.00000   1.00000   1.00000



          NUMBER OF BOUNDARY NODES=   16

            NODE     X-COORDINATE     Y-COORDINATE
               1      10.00000000       0.00000000
               2       7.07000000       7.07000000
               3       0.00000000      10.00000000
               4      -7.07000000       7.07000000
               5     -10.00000000       0.00000000
               6      -7.07000000      -7.07000000
               7       0.00000000     -10.00000000
               8       7.07000000      -7.07000000
               9       5.00000000       0.00000000
              10       3.53500000      -3.53500000
              11       0.00000000      -5.00000000
              12      -3.53500000      -3.53500000
              13      -5.00000000       0.00000000
              14      -3.53500000       3.53500000
              15       0.00000000       5.00000000
              16       3.53500000       3.53500000



          NUMBER OF INTERIOR POINTS=    4

           POINT     X-COORDINATE     Y-COORDINATE
               1       6.00000000       0.00000000
               2       7.00000000       0.00000000
               3       8.00000000       0.00000000
               4       9.00000000       0.00000000
  END OF INPUT-DATA ECHO PRINT



               *** N U M E R I C A L  S O L U T I O N  ***
  -- FLUX ON BOUNDARY --

 ELEMENT NODE-I NODE-J NODE-K         DP/DN(I)         DP/DN(J)         DP/DN(K)
       1      1      2      3  0.1455457929      0.1450576332      0.1455457929    
       2      3      4      5  0.1455457929      0.1450576332      0.1455457929    
       3      5      6      7  0.1455457929      0.1450576332      0.1455457929    
       4      7      8      1  0.1455457929      0.1450576332      0.1455457929    
       5      9     10     11 -0.2916232116     -0.2892339421     -0.2916232116    
       6     11     12     13 -0.2916232116     -0.2892339421     -0.2916232116    
       7     13     14     15 -0.2916232116     -0.2892339421     -0.2916232116    
       8     15     16      9 -0.2916232116     -0.2892339421     -0.2916232116    



  -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --

    NODE      FREE TERM        POTENTIAL
      1       0.470138   0.00000000E+00
      2       0.500000   0.00000000E+00
      3       0.470138   0.00000000E+00
      4       0.500000   0.00000000E+00
      5       0.470138   0.00000000E+00
      6       0.500000   0.00000000E+00
      7       0.470138   0.00000000E+00
      8       0.500000   0.00000000E+00
      9       0.529863    1.0000000    
     10       0.500000    1.0000000    
     11       0.529863    1.0000000    
     12       0.500000    1.0000000    
     13       0.529863    1.0000000    
     14       0.500000    1.0000000    
     15       0.529863    1.0000000    
     16       0.500000    1.0000000    



  -- POTENTIAL AT INTERNAL POINT --

  POINT X-COORD     Y-COORD   POTENTIAL
     1  6.0000     0.00000E+00 0.73185    
     2  7.0000     0.00000E+00 0.50940    
     3  8.0000     0.00000E+00 0.31682    
     4  9.0000     0.00000E+00 0.14758