WELCOME TO PARABOLIC ELEMENT BEM PROGRAM

                                I N P U T   D A T A
          BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
          BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
                IF ELM TYPE(I) = 1, THEN DIRICHLIT.
                IF ELM TYPE(I) = 2, THEN NEUMANN.


          ====> NUMBER OF ELEMENTS=   18

                    ELM # ---> ELEMENT NUMBER
          ELM #    I    J    K ELM TYPE        BOUNDARY VALUES
              1    1    2    3        2   0.00000   0.00000   0.00000
              2    3    4    5        2   0.00000   0.00000   0.00000
              3    5    6    7        2   0.00000   0.00000   0.00000
              4    7    8    9        2   0.00000   0.00000   0.00000
              5    9   10   11        2   0.00000   0.00000   0.00000
              6   11   12   13        2   0.00000   0.00000   0.00000
              7   13   14   15        1  60.00000  60.00000  60.00000
              8   15   16   17        1  60.00000  60.00000  60.00000
              9   17   18   19        2   0.00000   0.00000   0.00000
             10   19   20   21        2   0.00000   0.00000   0.00000
             11   21   22   23        2   0.00000   0.00000   0.00000
             12   23   24   25        2   0.00000   0.00000   0.00000
             13   25   26   27        1  60.00000  60.00000  60.00000
             14   27   28    1        1  60.00000  60.00000  60.00000
             15   29   30   31        1  30.00000  30.00000  30.00000
             16   31   32   33        1  30.00000  30.00000  30.00000
             17   33   34   35        1  30.00000  30.00000  30.00000
             18   35   36   29        1  30.00000  30.00000  30.00000



          ====> NUMBER OF BOUNDARY NODES=   36

            NODE     X-COORDINATE     Y-COORDINATE
               1     180.00000000      60.00000000
               2     150.00000000      60.00000000
               3     120.00000000      60.00000000
               4      90.00000000      60.00000000
               5      60.00000000      60.00000000
               6      30.00000000      60.00000000
               7       0.00000000      60.00000000
               8     -30.00000000      60.00000000
               9     -60.00000000      60.00000000
              10     -90.00000000      60.00000000
              11    -120.00000000      60.00000000
              12    -150.00000000      60.00000000
              13    -180.00000000      60.00000000
              14    -180.00000000      45.00000000
              15    -180.00000000      30.00000000
              16    -180.00000000      15.00000000
              17    -180.00000000       0.00000000
              18    -135.00000000       0.00000000
              19     -90.00000000       0.00000000
              20     -45.00000000       0.00000000
              21       0.00000000       0.00000000
              22      45.00000000       0.00000000
              23      90.00000000       0.00000000
              24     135.00000000       0.00000000
              25     180.00000000       0.00000000
              26     180.00000000      15.00000000
              27     180.00000000      30.00000000
              28     180.00000000      45.00000000
              29       0.00000000      20.00000000
              30       3.54000000      18.54000000
              31       5.00000000      15.00000000
              32       3.54000000      11.46000000
              33       0.00000000      10.00000000
              34      -3.54000000      11.46000000
              35      -5.00000000      15.00000000
              36      -3.54000000      18.54000000




 ====> NUMBER OF NODES ON FREE SURFACE =          13
  NODAL NUMBER
    1    2    3    4    5    6    7    8    9   10   11   12   13
  END OF INPUT-DATA ECHO PRINT



               *** N U M E R I C A L  S O L U T I O N  ***
  -- FLUX ON BOUNDARY -- (QN = HEAT FLUX IN NORMAL DIRECTION)

 ELEMENT NODE-I NODE-J NODE-K            QN(I)            QN(J)            QN(K)
       1      1      2      3  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       2      3      4      5  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       3      5      6      7  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       4      7      8      9  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       5      9     10     11  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       6     11     12     13  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       7     13     14     15 -0.9791585214E-01 -0.1247270757     -0.1291429933    
       8     15     16     17 -0.1291429933     -0.1327351734     -0.1367117033    
       9     17     18     19  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      10     19     20     21  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      11     21     22     23  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      12     23     24     25  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      13     25     26     27 -0.1367117033     -0.1327351734     -0.1291429933    
      14     27     28      1 -0.1291429933     -0.1247270757     -0.9791585214E-01
      15     29     30     31  0.4585107824      0.5212542067      0.5607391003    
      16     31     32     33  0.5607391003      0.4550116563      0.3526272424    
      17     33     34     35  0.3526272424      0.4550116563      0.5607391003    
      18     35     36     29  0.5607391003      0.5212542067      0.4585107824    




  -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --

    NODE      FREE TERM        POTENTIAL
      1       0.232131    60.000000    
      2       0.500000    56.363968    
      3       0.500427    52.219835    
      4       0.500000    47.684031    
      5       0.495916    42.708510    
      6       0.500000    37.061341    
      7       0.548619    32.101740    
      8       0.500000    37.061341    
      9       0.495916    42.708510    
     10       0.500000    47.684031    
     11       0.500427    52.219835    
     12       0.500000    56.363968    
     13       0.232131    60.000000    
     14       0.500000    60.000000    
     15       0.500000    60.000000    
     16       0.500007    60.000000    
     17       0.250000    60.000000    
     18       0.500000    53.844045    
     19       0.500000    47.082456    
     20       0.500000    39.245296    
     21       0.500000    31.226667    
     22       0.500000    39.245296    
     23       0.500000    47.082456    
     24       0.500000    53.844045    
     25       0.250000    60.000000    
     26       0.500007    60.000000    
     27       0.500000    60.000000    
     28       0.500000    60.000000    
     29       0.529115    30.000000    
     30       0.500004    30.000000    
     31       0.529129    30.000000    
     32       0.500156    30.000000    
     33       0.528884    30.000000    
     34       0.500156    30.000000    
     35       0.529129    30.000000    
     36       0.500004    30.000000    




  COORDINATES OF FREESURFACE
 X=   180.000000000000          Y=   60.0000000000000     
 X=   150.000000000000          Y=   56.3639680416523     
 X=   120.000000000000          Y=   52.2198353091427     
 X=   90.0000000000000          Y=   47.6840305604442     
 X=   60.0000000000000          Y=   42.7085097949925     
 X=   30.0000000000000          Y=   37.0613409587312     
 X=  0.000000000000000E+000     Y=   32.1017395537293     
 X=  -30.0000000000000          Y=   37.0613409587312     
 X=  -60.0000000000000          Y=   42.7085097949923     
 X=  -90.0000000000000          Y=   47.6840305604441     
 X=  -120.000000000000          Y=   52.2198353091424     
 X=  -150.000000000000          Y=   56.3639680416521     
 X=  -180.000000000000          Y=   60.0000000000000