WELCOME TO PARABOLIC ELEMENT BEM PROGRAM

                                I N P U T   D A T A
          BOUNDARY ELEMENT METHOD APPLIED TO POTENTIAL PROBLEMS
          BOUNDARY CONDITIONS ARE ASSIGNED TO ELEMENTS.
                IF ELM TYPE(I) = 1, THEN DIRICHLIT.
                IF ELM TYPE(I) = 2, THEN NEUMANN.


          ====> NUMBER OF ELEMENTS=   14

                    ELM # ---> ELEMENT NUMBER
          ELM #    I    J    K ELM TYPE        BOUNDARY VALUES
              1    1    2    3        2   0.00000   0.00000   0.00000
              2    3    4    5        2   0.00000   0.00000   0.00000
              3    5    6    7        2   0.00000   0.00000   0.00000
              4    7    8    9        2   0.00000   0.00000   0.00000
              5    9   10   11        2   0.00000   0.00000   0.00000
              6   11   12   13        2   0.00000   0.00000   0.00000
              7   13   14   15        1  60.00000  60.00000  60.00000
              8   15   16   17        1  60.00000  60.00000  60.00000
              9   17   18   19        2   0.00000   0.00000   0.00000
             10   19   20   21        2   0.00000   0.00000   0.00000
             11   21   22   23        2   0.00000   0.00000   0.00000
             12   23   24   25        2   0.00000   0.00000   0.00000
             13   25   26   27        1  60.00000  60.00000  60.00000
             14   27   28    1        1  60.00000  60.00000  60.00000



          ====> NUMBER OF BOUNDARY NODES=   28

            NODE     X-COORDINATE     Y-COORDINATE
               1     180.00000000      60.00000000
               2     150.00000000      60.00000000
               3     120.00000000      60.00000000
               4      90.00000000      60.00000000
               5      60.00000000      60.00000000
               6      30.00000000      60.00000000
               7       0.00000000      60.00000000
               8     -30.00000000      60.00000000
               9     -60.00000000      60.00000000
              10     -90.00000000      60.00000000
              11    -120.00000000      60.00000000
              12    -150.00000000      60.00000000
              13    -180.00000000      60.00000000
              14    -180.00000000      45.00000000
              15    -180.00000000      30.00000000
              16    -180.00000000      15.00000000
              17    -180.00000000       0.00000000
              18    -135.00000000       0.00000000
              19     -90.00000000       0.00000000
              20     -45.00000000       0.00000000
              21       0.00000000       0.00000000
              22      45.00000000       0.00000000
              23      90.00000000       0.00000000
              24     135.00000000       0.00000000
              25     180.00000000       0.00000000
              26     180.00000000      15.00000000
              27     180.00000000      30.00000000
              28     180.00000000      45.00000000



          ====> NUMBER OF INTERIOR POINTS=    4

           POINT     X-COORDINATE     Y-COORDINATE
               1       0.00000000      20.00000000
               2       0.00000000      25.00000000
               3       0.00000000      30.00000000
               4       0.00000000      35.00000000




 ====> NUMBER OF POINT SOURCES =           1
 X-COORDINATE   Y-COORDINATE  MAGNITUDE
   0.00000000E+00    15.000000       -6.0000000    




 ====> NUMBER OF NODES ON FREE SURFACE =          13
  NODAL NUMBER
    1    2    3    4    5    6    7    8    9   10   11   12   13
  END OF INPUT-DATA ECHO PRINT



               *** N U M E R I C A L  S O L U T I O N  ***
  -- FLUX ON BOUNDARY -- (QN = HEAT FLUX IN NORMAL DIRECTION)

 ELEMENT NODE-I NODE-J NODE-K            QN(I)            QN(J)            QN(K)
       1      1      2      3  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       2      3      4      5  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       3      5      6      7  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       4      7      8      9  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       5      9     10     11  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       6     11     12     13  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
       7     13     14     15 -0.4519715821E-01 -0.4977747418E-01 -0.5037195129E-01
       8     15     16     17 -0.5037195129E-01 -0.5093741317E-01 -0.5171725613E-01
       9     17     18     19  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      10     19     20     21  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      11     21     22     23  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      12     23     24     25  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
      13     25     26     27 -0.5171725613E-01 -0.5093741317E-01 -0.5037195129E-01
      14     27     28      1 -0.5037195129E-01 -0.4977747418E-01 -0.4519715821E-01




  -- FREE TERM AND POTENTIAL VALUES AT NODAL POINTS --

    NODE      FREE TERM        POTENTIAL
      1       0.242391    60.000000    
      2       0.500000    58.527367    
      3       0.500028    56.980457    
      4       0.500000    55.391190    
      5       0.498552    53.780830    
      6       0.500000    52.241194    
      7       0.504998    51.412501    
      8       0.500000    52.241194    
      9       0.498552    53.780830    
     10       0.500000    55.391190    
     11       0.500028    56.980457    
     12       0.500000    58.527367    
     13       0.242391    60.000000    
     14       0.500001    60.000000    
     15       0.500000    60.000000    
     16       0.500007    60.000000    
     17       0.250000    60.000000    
     18       0.500000    57.684467    
     19       0.500000    55.294656    
     20       0.500000    52.743505    
     21       0.500000    50.005763    
     22       0.500000    52.743505    
     23       0.500000    55.294656    
     24       0.500000    57.684467    
     25       0.250000    60.000000    
     26       0.500007    60.000000    
     27       0.500000    60.000000    
     28       0.500001    60.000000    




  -- POTENTIAL AT INTERNAL POINT --

  POINT X-COORD     Y-COORD   POTENTIAL
     1 0.00000E+00  20.000      49.705    
     2 0.00000E+00  25.000      50.421    
     3 0.00000E+00  30.000      50.832    
     4 0.00000E+00  35.000      51.101    




  COORDINATES OF FREESURFACE
 X=   180.000000000000          Y=   60.0000000000000     
 X=   150.000000000000          Y=   58.5273671044705     
 X=   120.000000000000          Y=   56.9804567916315     
 X=   90.0000000000000          Y=   55.3911900569322     
 X=   60.0000000000000          Y=   53.7808298221728     
 X=   30.0000000000000          Y=   52.2411938560916     
 X=  0.000000000000000E+000     Y=   51.4125008008968     
 X=  -30.0000000000000          Y=   52.2411938560917     
 X=  -60.0000000000000          Y=   53.7808298221728     
 X=  -90.0000000000000          Y=   55.3911900569323     
 X=  -120.000000000000          Y=   56.9804567916315     
 X=  -150.000000000000          Y=   58.5273671044706     
 X=  -180.000000000000          Y=   60.0000000000000